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We solve certain optimal control problems for the motion of a ogle-agency 
oscillatory system which in the unperturbed state consists of an arbitrary number 
of oscillating elements. The solution is performed in the first approximation 
with respect to a small parameter e . We assume that the frequency depends 
upon slow time, while the control goes only into the perturbing terms, so that the 
system is formally weakly controllable [l], Rut since the time interval over which 
the process evolves is a quantity -Z/e, all the controlled quantities are able to 
vary substantially [2, 31, i.e. we investigate the case, interesting in practice, of 
srnd.l but protracted control forces. As mechanical examples we calculate some 
optimal control problems for the oscillations of systems of the plane oscillator 
type, etc. 

1. Stat6~e~t of the optimal control problem and thr coartruc- 
tfon of the rvrrrgsd boundrty-vrlur ptoblem~ of the maximum 
principle, We consider a quasilinear mechanical system of the form 

p C+* + k (7.)~ = Ej (z, r, r*, u) + F (2) (1.11 
r {lo) =t; ro, r’ (to) = 70’ 

decomposing into n oscillating elements when e = 0. Here r = (zI, . . . . ~4 and 
i = Ctr / dl are generalized coordinates, t > to is time, z = et f const is “slow 
time” , e cz IO, 1201 is a small parameter, e > 0. u = (u,, ,,., u,) is the control 
vector, u 6~ G, U is some fixed convex set, to, ro, ro* are the initial data. The 
matrix-valued functions j.k , the ‘* mass”, and k , the “rigidity factor, are assumed diago- 
nal and strictly positive. All the functions are taken to be sufficiently smooth in the ar- 
gument ranges being examined. 

Formally system (1.1) is weakly controllable Cl] since when e = 0 there is no con- 
trol 

p (z)r” + k ($7 = F (z), -T = const (1.2) 

Using the soIution of system (1.2) we reduce (1.1) to a standard form, more convenient 
for investiga~on, by means of the relations 

r =asin$+bcos$ +k+F, r’=v(acos\p-bsin\p) 
t (1.3) 

Here a, and b are new (slow)-variables, Y‘J is a diagonal matrix of the squares of the 
natural frequencies, while an expression such as n sin 3, is a vector of the form 
(or sin&, . . . . 6 Sin qn). By differentiating the relations (1.3). by virtue of the pertur- 
bed system (l.l),we obtain 
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958 L.D.Akulenko 

a’ = ev-lp-lf co.9 $ - ev-lv’ (a cos $ - b sin 9) cos II, - (1.4) 

E (AT-~F)’ sin 9 = eA 

b’ I= -W-lp-lf sin ‘II, + W-lY’ (U COs $ - b sin $) sin 9 - 

8 (k-lF)‘cos ql 3 EB 

9,’ = v (T)), 9 (lo) = 0 

(a (to) = v-1 [v (r - k_lF) sin IJI + r’ cos *It, 3 UO, b (to) = 
v-1 [v (r - k_lF) cos 1~, - r’ sin $lte = bo) 

Here the prime denotes the derivative with respect to Z. In coordinate notation, for 

example, the first term of the upper equation has the form 

vielptelft (z, ~j sin $j + bj COS 91 + k,-lF,, Vj-’ (al COS ‘$1 - 

b, sinvj),uJ COs+i (i, j= 1, 2, . . . . n) 

The right-hand side of system (1.4) is a complex multi-frequency function ; the appli- 

cation of averaging methods to it leads to considerable difficulties evoked by resonances 

[4, 51. Optimal control problems for an analogous system with v = const were exa- 

mined in [6]. For systems with variable frequencies the assumptions of absence or pre- 

sence of resonance properties are rather artificial. Therefore, below we investigate sys- 
tem (1.4) under the condition that all the vi (I$ coincide, namely, a single-frequency 

system. Then the right-hand side of (1.4) is periodic in 9 with period 2% Certain spe- 
cific mechanical problems of control that is optimum in the sense of various criteria 
of control by slow variables a and b for the single frequency systems are solved with 

application of the conical averaging method developed in [Z, 33. Here it is natural to 
assume that the functional and the terminal manifold do not depend strongly on time t 

or phase*. 

We proceed to stating the optimal control problems for system (1.4) and to a brief 
formulation of the results of applying the averaging method. I& the performance index 

be t) 
n 

J=g(~,a,b)le+esG(t,a,b,~,u)dt;,min (1.5) 
t. UEU 

Here 8 = T (T - 1 / 8) is a specified quantity for problems with a fixed process 
termination Instant and 8 = tl Is an unknown quantity subject to determination for 

the time-optimal problem. Then, instant tl is chosen from the condition 

M (7, a, b) I tz = 0, ~4 = (Ml, . . . . ML), L < 2n (1.6) 

Suppose that the problems posed have solutions. Then the optimal control and trajec- 
tory satisfy the maximum principle [7] 

H* E [- eG + e (pi) + e (qB) + p+vl* - r”u” H, t E [to, 01 (1.7) 

Here H is the Hamilton function, the asterisk signifies that the functions are taken for 
u = u* (t) , namely, the optimal control, and for the solution of system (1.4), corre- 
sponding to it, while the parenthesesdenote the scalar product. The variables p, q and 
p+ adjoint to a, b and 9, respectively, satisfy the system 

p” = - e(ah/aa)*, q’ = - s(ah/ab)*, p+’ = - e (ah/a~1)* (1.8) 

Hreh-f-VP+ 
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and certain boundary conditions. For problems with fixed 8 = T 

p (T) = -(@ / aa)T, Q (T) = -(& 1 WT, PJ, (T) = 0 (1.9) 

For the time optimal problem 

P (h) = - & (g + WfNt,, 4 w = - & (g + WfNt,, p.4 (h)= 0 (1.10) 

Here 5 = (h,, . . . . AL) is a parameter eliminated during the solving process. The equa- 
lity 

H* Ill = a (X + (n $JQ (1.11) 

closes the system of boundary conditions. 
If the maximum of H is achieved inside set U, and H is continuously differentiable 

in ui,then 
dH/& = 0, i=i,...,m (1.12) 

These relations can be looked upon as equations relative to an unknown vector U. Thus, 
suppose that the control vector 

u* = V (‘c, a, b, 9, P9 4 (1.13) 

has been found from condition (1.7) or, in particular, from Eqs. ( 1.12) and is a smooth 
function periodic in 9. Substituting it into Eqs. (1.4) and (1.8), we obtain a boundary- 
value problem described by a standard system with rotating phase and a periodic right- 
hand side. 

Let us write out the first-approximation boundary-value problems, using the procedures 
developed in [2,3]. The corresponding equations do not contain the fast variable in the 
right-hand side and can be written in the slow time s = et 

da 
- = A0 (f, a, p, E, q), 
ds a (so) = ao; $ = - 2 (% a, p, E, rl) (l* 14) 
43 

ds = Bo (z, a, p, f, q), B (so) = bo; 

Here a, b, 6 and ‘1 are the averaged values of the variables a, b, p and q , respec- 
tively, The independent variable s varies on an interval of the order of unity: s E 
[SO, a], where so = sto, while o = eT = S or u = et, s s,. The right-hand side of 
system (1.14) is constructed by the averaged Hamiltonian ko l 

We note that the identities 

are used here. From (1.16) follow 
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ako A ako 
z = O’ aa -=(%$)+(dg) (1.17) 

ako B so 
-= 0, aq ~=(%$)+(11g) 

Here and in (1.14) we have introduced the notation 

The boundary conditions for the fixed-time problem are 

% (4 = -4% 6, a, fN I aa% v(S) = -(@? (7, a, p) I @I)&¶ (1.19) 

In the time-optimal problem the boundary conditions (1.19) are written analogously 

% (Sl) = - & (g + (W)w 11 (Sl) = - + (g + wm, (1.20) 

g = g (7, a7 iv, M = M (T, a, B) 

and analogously for (1.11) 

kol(, = [$ + (h %)1* (1.21) 

Thus, the uniquely derived solutions of the approximate boundary value problems provide 
an approximate solution for the input boundary value problems with an 8 error and, also, 
for optimum control problems with an e error with respect to the slow variables, while 
for the functional the error in the determination of the instant 4 is of the order of unity, 

The justification of the averaging method for smooth right-hand sides is contained in 
[4, 53. However, in the case of a closed set U with a right-hand side of system (1.4), 
linear in II , which often holds in practice [8], the maximum of Hamiltonian (1.7) is 
achieved,as a rule,on the boundary of set U, i.e. the function V in (1.13) is piece- 
wise-continuous and the number of dlscontinuities of the first hind in the right-hand 
side of the averaged system is of the order of [l/e]. To justify the averaging method in 
this case we can apply the results of [S] wherein standard systems with discontinuous 
right-hand sides are investigated. We note that higher approximations can be constructed 
with the aid of the canonic averaging method developed in [2, 31. 

2. Approximrt8 solution of certain concrete optimrl control 
problema. Everywhere below let function f be linear in u and let m = n, i.e. 
f = f. (T, r, r’) + u. Let us first consider the problem of minimizing a quadratic 
functional of the form (1.5) with a specifled instant T. Let G = us = Xura, set U 
be unbounded, while g = xE, E = RW’~ / 2 + k (r - k-lF)a / 2 = k (aa + 
ha) / 2. The quantity E has the sense of the energy of the oscillations ; expressions of 
type mrSa are scalars ~‘a = reTmr’ = m1rla2 + . . . + % rna2. 

By (1.12) and (1.13) we find: u* = (v-‘p-l / 2)03 cos 9 - q sin 9). Let us now 
compute the average value of Hamiltonian (1.15) determining the averaged system of 

equations k. = (~-*p-‘)~ (% + q’) / 8 - v-*v’ (a% + /-hi) / 2 + .-*P- (%toe - ties) 

Here we have denoted 



Optimal control of the motion of an oScillatOry System 961 

f. (z, a sin $ + /3 cos I# + k-IF, 
0 

Let a small viscous friction - eyr’ act on system (1.1) (y (2) is a diagonal matrix 
with positive elements). Then foe = --yo / 2, and fos = yfi / 2. As a result we 
obtain a boundary-value problem with separable variables admitting an explicit inte- 
gration. We write the solution using index notation 

(2.1) 

Here 
& (S) s Vi-lYi’ / 2 + pi-lri, ri (S) = (Yi-l~i-‘) / 2, T = 8 f COllSt (2.2) 

- xki (S) [ 1 + xki (S) 1 ri (s) exp (2 { A&‘) ds1-l X 

aa 

The expressions (2.1) and (2.2) obtained yield an approximate solution of the optimal 
control problem with an error of order 8 for the time interval t E [to, Tl, where 
T N 1 I e. We note that the value of E can be made as small as desired by increasing 
the constant X > 0 ; here the magnitude of the functional remains finite. Using these 
formulas we can obtain also an approximate optimal solution of the problem of “buildup’, 
i. e. of increasing the energy of the oscillations, which corresponds to the case of X < 0. 

Let us now consider the time-optimal problem with respect to energy 
h 

E Is = EI, J= Xet,+ e{u2dt+min (E, x>O) 
t* 

without constraints on the control. Suppose that assumptions analogous to the preceding 
example are fulfilled. Then the approximate optimal control has the form u* = 
v-r/.&-r (5 cosq - q sin 9) / 2 -I- 0 (e), where !j and 7 are computed from formu- 
las (2.1) and (2.2) in which the parameters x and (J are roots of the equations 

exp (2 S A&I) ds]l = EI 
a 
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exp (- 2 i A&s) [I + xXe, (a) S ri (s) exp (2 S A&) ds]” = x 
80 be u 

If the system parameters are the same and constant, i. e. there is no dependence on T , 

then the problem admits of an explicit solution [3]. 
Suppose now that there are constraints on the control of the form I Uf 1 < uie (i = 

1 7 *se, n). From the maximum condition on the HamiltOnian (1.7) we obtain U1* = 

ufo sign (pi co9 ‘II, - q1 sin 4). Averaging over I/J leads to the following expression 

Under the condition v =: const and fo 5 0 we can obtain solutions for the fixed- 

time and the time-optimal problems since $, ‘1 = con& while ai and #!i are piece- 
wise-linear functions. The solution becomes complicated if there are singular controls. 
However, even In these situations the averaging method substantially simplifies the in- 
vestigation of the optimal control problem. 

3. Solution of the problem for a plane orcfllrtor in polar co- 
or d i nr t e 8, In certain problems it may be convenient to consider the equations of 
motion in a non-Cartesian coordinate system. For example, in the three-dimensional 
case (a spatial oscillator) the controls can be directed along the unit vectors of a sphe- 
rical coordinate system, u = (u,, r&, r&) or the perturbing forces are simply described 
in spherical coordinates. Let us write out the corresponding equations of motion: 

mr” + kr - mrtY2- n2zq-1’~ sin2 0 = eu, + efr 
O\(r,\<r\(rzc- 
mre” + 2mr’W - mrcpaa sin 8 cos 8 = eufl + efe, 0 < 8 < n 

m sin Bgr” + 2mrcp’B’ 410s 0 + 2mr*cp’ sin 0 = eu, + e#* 

o<(p<2n 

To illustrate the arguments presented we investigate the plane problem (0 N rr / 2). 
The equations of motion of a plane oscillator in polar coordinates (r, cp) under the con- 
trol eu = (au,, au,) are 

I”’ = v,, r. (to) = ro (3.1) 

V ?’ = vqs / r - kr I m + eu, I m + e69 I m’, v, (to) = v,.~ 

cp’ =g/r, cp 00) = cpo 
. 

Vf+ = -v,v, / r f eu, I m, vql (to) = v,a 

Here r is the distance to a fixed center, k is the‘rigidity factor of the restoring force, 
86p is a nonlinear perturbation of the restoring force, m is the mass, 824, and er.6, 

are the radial and transversal components of the control vector. Qn the right in (3.1) 
we have given the corresponding initial conditions. For the sake of simplicity we as- 
sume that the problem’s parameters are constant. 
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We reduce system (3.1) to the standard form with rotating phase [2,3], TO do this 
we make use of the general solution of the unperturbed system, having taken the follow- 
ing set of integrals of motion: 

1) miv,a+tr,“)/2+k~/2=E>0, 2) mrvV=iK 3)rs=Wk 

4) ip = 7 + arctg t$!Z!Z. = 7 + arctg 
-w* E 

w + 1/1 - UP X 

Here 
z =I -+-wsinZ$ w = 11 - (vM I E)a]‘” 

$ =v (t - to) +qo, v* = k I m, E (1 -w)/k+=\<E(i+w)/k 

The quantities E, M (zu) 9 , o and y are constants of integ~tion. We note tbat instead 
of relations (3) or (4) we can take the equivalent: 9 = Np/mE 11 - w sin 2 (cp - 
y)]. Formulas (3) and (4) yield explicit expressions for IL (t) and cp (t). The velocities 
corresponding to them ane 

~~=~~(~~=~)/E~mzcosZ~, ~~(t)=r(~*=M/mr =(M/m)~k~ 

By ~ffe~n~ting integrals (1) -(4) by virtue of the perturbed system (3. l), we obtain 
the required system of equations and initial values 

E’S ev, (u, + 69) + P;v~u,, E (to) = Eo (3.2) 

M = =+., M (to) = MO 

7’ z - v’l=iF 
w. ~a~(eos~~wsin~~ 

Here v is a constant frequency ; the initial conditions for the new variables are given 
in accord with (l)-(4) 

2Eo = m(vros + vW*) -j- bo’, MO = mrov~, wo - f/1 -(viU~/ E$ (3.3) 

sin 29” = (kro* - Eo) f wo, 70 = cpo - arctg TrG 

qp” and Yo are determined to within L’V~; (N is an integer). We note further, that the 
right-hand side of system (3.2) is periodic in 9 with period n, while the quantity w 
varies in accord with the equation 

+MaE’ ’ we’=_ E 
W ( I( 

__!& 
E 1 

(3.4) 

In the investigations to be carried out we assume that the variable w lies within the 
limits i w E [wI, wJ, where w, > 0, w2 < 1, i. e. the motion-is a nondeg~e~te 
ellipse if at each instant t we se-t 8 equal to zero. Obviously, one of the first two equa- 
tions in (3.2) can be replaced by Eq. (3.4) with the corresponding initial condition from 
(3.3). We note also that the right-hand side of system (3.2) is independent of y. 
Therefore,if the functions &and u,are independent of y, the equation for y can be 
integrated separately, whiie the corresponding adjoint variable is retained, 



964 L.D.Akulenko 

We now pose the following “time-optimal with respect to energy” problem : transfer 
a system into a state with energy E1 at a certain nonfixed instant tI in such a way that 
a functional of type (1.5) 

J = El& + e 5 (u,.’ + urp2) dt (3.5) 
0 

is minimized. Here I > 0 is a given number. The remaining variables are assumed 
to be free at the right end. We write out the Hamiltonian (1.7) 

H =-El - e fUra + %“) + 8 (P-E% + pyfvr + qf+r)Ur + 

s(pEv~ + pMr + pyfw + qfb) uQ + vq + ep&%, 

Here PE, PM* pr and q are the corresponding adjoint variables, while the functions 

fmfm fh. and fh are the coefficients of u, and u,in the third and fourth equa- 

tions (3.2), whose forms are immaterial for the present. From the condition (1.12) on 
H of maximum over u we obtain 

u r * = f @xv, + P&r + qfbr) (g = 0) (3.6) 

'Q *=+(PE b +PMr + It(YfiO +qf+Q) (E=o) 

We note the obvious properties of the resulting boundary-value problem. Since the 
function H* is independent of y, then pr' = 0, while as a result of the zero boundary 
condition we obtain that pr z 0. Further, Tom the form of the right-hand side of the 
equation for q and from the zero boundary condition follows that q = 0 (e),. i.e. we 
can neglect the quantity q .in the first approximation being examined [Z, 31. Thus, 
averaging over $, we obtain 

k,=(h)=--l+~*+*++J!!+ 
m 

since 

(v,") = &(I - +v)' (ra)= $, (v,%> =-&v, (vg)= 5 

Here g, .?@ and p, q~ are the averaged values of the variables E,, PE and hf,p~ 
respectively, while the angle brackets signify averaging over 9 (see (1.15) and (1.18)). 

The averaged equations for 4, qx, p, q~ are written in canonic form with the aid of 
the function I& The solution of the boundary-value problem is 

s (a, s1) = [VXI - + (KG- y’E,J] (3.7) 

p (s, ~1) = 4, $ 
C 

An expression for 6, is obtained by equating the quantity k. to zero ; as a result 

s1=2J/3-r/Ea-)/E,( (3.6) 

According to (3.6) the approximate optimal control is 
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* G-l = 
TE (‘9 fi) 4 (8, 5) 

2 (0 (s, 4 m cos29/ 1/i +osin2$ (3.9) 

After E, qx and EL, r~ have been famd,expressions for the mean values of variables 
y and ‘p are obtained by quadrature. The approximate value of the slope angle a of 
the control vector u to the transversal is computed from (3.9) 

As a result, expressions (3.7)-(3.9) yield the approximate solution of the optimal con- 
trol problem (3.2),(3.5) with the control process termination condition E (tr) = E,. 
Of course, this solution brings in an error of order e in the slow variables and in the 
functional, while the process termination instant t, = s, / a - 1 / e is determined 
with error 0 (1). It is interesting to note that the values of E and p do not depend 
explicitly on the rigidity k; they are also independent of 6, i. e. the nonlinear supple- 
ment of the restoring force. The change in frequency at the expense of this component 
equals -36 (E)l(4mkv) which corresponds to the one-dimensional case [Z] . 

We note also that if w --f 1 (w < 1) s i. e. oscillations along a straight line, or 
w + 0 (w > 0) , i. e. motion along a circle, then Eqs. (3.2) are degenerate and re- 
quire additional investigation. In this case we can analyze the system’s motion in a 
Cartesian coordinate system (see (1.1)) or in any other system, for example, in the sys- 

tem (a, b, cp) ( see Sects. .l and 2), in which the equations of motion do not degenerate. 
In the Cartesian coordinate system the problem being examined is described, when 6 = 
0, by a linear system of eight differential equations, and with the quadratic process 
termination condition [(m / 2)raa + (k / 2)9],, = El for a specified value of tl 
can, in principle, be analytically solved exactly. However, for the determination of the 
control process termination instant t, we obtain a transcendental equation of type 
(1. ll), admitting of an infinite set of roots as e --t 0 , among which it is necessary to 
choose the best in the sense of the criterion being analyzed. Since the resulting expres- 
sions are exceedingly cumbersome even for the one-dimensional case, the advantage 
of applying the averaging method for the investigation of the multi-dimensional sys- 
tems is obvious p, 3). 

Let us now consider the problem of “pure time-optimality”. Let 1 U, 1 < utO, and 
1 uQ 1 6 hot and let the control process termination condition be E (tl) = El, 
while the remaking phase variables are considered free at the right end. By computing, 
as before, the Hamiltonian (1.7) and retaining the same notation, from the condition 
of maximum of &f over 24 we obtain 

Ur *_ - ho sign (PEG + Pvfyr + qf+r) s sign hr 

UQ * = UQo sign @vQ + pm + pyfyQ + qf+Q) = sip & 

The system of equations and the boundary conditions for the adjoint variables have the 
form (1.8), where h* = 1 h, 1 + I& [, h* (tl) = 0, q (t) = -A* / Y. In the first 
approximation the required slow variables are described by a canonic system of type 
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(1.14)with a Hamiltonian ko =u,.o I?'jsj <i&l> + W (1 tl&% + rl.W I)- From 

the equations we see that the best result is achieved under the condition sign q~ = 
sign (Qz%+‘lMd= sign (-4- Eo). We then obtain the Cauchy problem 

d% ’ b = (%I (I or I> + %o (up)) sign (E, - Eo), 

G 1 h = uQo <r) sign (E, - Eo), 

g (0) = & 

p (0) = MO 
and the condition 5 (si) = E, determining s, uniquely. Now the required solution 

can be obtained by simple computational means. 

In conclusion, we consider the case of variables m (1;) and k (z) (6 = 0) and of 

constraints on the control of the form uX2 + z+,~ < ~0s. Let a~, @)uX and elr, (z&, 
be the controls, where or, and I(~ are specified functions. As a result of applying the 

procedures in Sect. 1 we obtain 

u, = uo (px / R)(& cos 9 - l&, sin 9) + 0 (e) 

U, =Uo(~v/R)(n,cos~---Ildsin~) +0(e) 

Ra = px2 (III, cos II, - nb sin 9)” + pva (II, co8 9 - IId sin rp)* 

n (7) = I-I (a)[m (7)Y (r) / m (u)v (a)]‘/* 

is the averaged adjoint vector). The corresponding averaged phase vector is 

I 

% (4 = %o [ m (zo) v (n) *h 
m (?) Y (?) I 

as’ 

f-m (+ (f) 

%o = (a09 bo7 co, do) 

a=(A+C)/2+[(A-C)2/4+B2]l'~, P=A+C-a 

A = px2Q2 + py2Ki2, B = -(P~aKJb+P,2m-L), C = p2*K2 + &3x 

Here E is the elliptic integral of the second kind, while the vector n (a) is determined 

from the final expressions, namely, the transversality conditions at the right end. 
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We examine a class of problems in which the pay-off is some function of the 
terminal state of a conflict-controlled system. When the opportunities of one 

of the players are small in relation with the opportunities of the other, we pro- 

pose methods for constructing approximate optimal strategies of the players, 
based on solving the Bellman equation containing a small parameter. We have 

shown that the players’ approximate optimal strategies can be constructed ifthe 

solutions of the corresponding optimal control problems are known. The error 

bounds for the methods are proved and examples are considered. The arguments 
used rely on the results in [l-6] on the theory of differential games and on 

[7- 111 devoted to optimal control synthesis methods for systems subject to ran- 

dom perturbations of small intensity. 

1. Strtrment of the problem, Let the motion of a conflict-controlled 
system be described by the nonlinear equation 

dx 
- = F (2, t, u, v), 
dt u E P, u E Qc, 5 [to] = 20, t E [to+ T1 ( 1.1) 

Here z is an n-dimensional vector, II and v are r-dimensional control vectors ofthe 
first and second players, respectively, P and Qc are closed bounded sets, F is a con- 
tinuous function satisfying a Lipschitz condition in x and v. The pay-off is the quantity 

f [x( T)1 determined at the terminal instant t= Tin the position t ( T) realized. The 
first player tries to minimize f [Z (T)] under the most unfavorable behavior of the 
second player. The second player’s task is to guarantee the game’s completion with 

the largest possible value of the pay-off. We assume that the opportunities of one of 
the players are small in comparison with the opportunities of the other. Namely, we 
assume that the set QE can be contained within an r-dimensional sphere of radius e 
small in relation to the minimal radius of the sphere which can contain set P. We 


